\qquad
Math 3053 Section 01
Practice Final Exam
November 14, 2019
Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let $f: \mathbb{R} \rightarrow[0,1]$ be a continuous function. Prove that $g(x)=\sin (f(x))$ is continuous on \mathbb{R}.
2. Prove that $f(x)=|x|$ is a continuous function on \mathbb{R}.
3. Let $p, q \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}x^{p} \sin \left(\frac{1}{x^{q}}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

For which values of p and q is f continuous at $x=0$? Be sure to justify.
4. Suppose f is a continuous function on $[a, b]$ and g is a continuous function on $[b, c]$ such that $f(b)=g(b)$. Define $h:[a, c] \rightarrow \mathbb{R}$ by

$$
h(x)= \begin{cases}f(x) & \text { if } a \leq x \leq b \\ g(x) & \text { if } b \leq x \leq c\end{cases}
$$

Prove that h is continuous on $[a, c]$.
5. Let X be a countable set of real numbers and fix a to be a real number. Define the set

$$
a+X=\{a+x: x \in X\} .
$$

Prove that $a+X$ is countable.
6. Let X be a countable set of real numbers and fix a to be a nonzero real number. Define the set

$$
\frac{X}{a}=\left\{\frac{x}{a}: x \in X\right\} .
$$

Prove that $\frac{X}{a}$ is countable.
7. Let $d=\operatorname{gcd}(a, b)$ where $a, b \in \mathbb{N}$. If $a=d a^{\prime}$ and $b=d b^{\prime}$, show that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$.
8. Let $d=\operatorname{gcd}(a, b)$ where $a, b \in \mathbb{N}$. Prove that $\frac{a}{d}$ and $\frac{b}{d}$ are relatively prime.
9. We showed \mathbb{R} is uncountable by proving $(0,1)$ is uncountable. By assuming \mathbb{R} is uncountable, prove that the interval $(0,1)$ is uncountable by constructing a map from $(0,1)$ to \mathbb{R} and demonstrating the map is a bijection.

